Conformal Infinity
نویسنده
چکیده
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
منابع مشابه
Null-geodesics in Complex Conformal Manifolds and the Lebrun Correspondence
In the complex-Riemannian framework we show that a conformal manifold containing a compact, simply-connected, null-geodesic is conformally flat. In dimension 3 we use the LeBrun correspondence, that views a conformal 3-manifold as the conformal infinity of a selfdual four-manifolds. We also find a relation between the conformal invariants of the conformal infinity and its ambient.
متن کاملRigidity of Conformally Compact Manifolds with the Round Sphere as the Conformal Infinity
In this paper we prove that under a lower bound on the Ricci curvature and an asymptotic assumption on the scalar curvature, a complete conformally compact manifold (M, g), with a pole p and with the conformal infinity in the conformal class of the round sphere, has to be the hyperbolic space.
متن کاملquaternionic contact structures in dimension 7
The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be the...
متن کاملStructures in Dimension 7
The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n − 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be th...
متن کاملEinstein Metrics with Prescribed Conformal Infinity on 4-manifolds
This paper considers the existence of conformally compact Einstein metrics on 4manifolds. A reasonably complete understanding is obtained for the existence of such metrics with prescribed conformal infinity, when the conformal infinity is of positive scalar curvature. We find in particular that general solvability depends on the topology of the filling manifold. The obstruction to extending the...
متن کاملDoes asymptotic simplicity allow for radiation near spatial infinity?
A representation of spatial infinity based in the properties of conformal geodesics is used to obtain asymptotic expansions of the gravitational field near the region where null infinity touches spatial infinity. These expansions show that generic time symmetric initial data with an analytic conformal metric at spatial infinity will give rise to developments with a certain type of logarithmic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2000